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Abstract
The properties of a non-canonical 3D Wigner quantum oscillator, whose
position and momentum operators generate the Lie superalgebra sl(1|3), are
further investigated. Within each state space W(p), p = 1, 2, . . . , the energy
Eq, q = 0, 1, 2, 3, takes no more than four different values. If the oscillator
is in a stationary state ψq ∈ W(p) then measurements of the non-commuting
Cartesian coordinates of the particle are such that their allowed values are
consistent with it being found at a finite number of sites, called ‘nests’. These
lie on a sphere centred on the origin of fixed, finite radius �q . The nests
themselves are at the vertices of a rectangular parallelepiped. In the typical
cases (p > 2) the number of nests is 8 for q = 0 and 3, and varies from 8 to
24, depending on the state, for q = 1 and 2. The number of nests is less in the
atypical cases (p = 1, 2), but it is never less than 2. In certain states in W(2)

(respectively in W(1)) the oscillator is ‘polarized’ so that all the nests lie on a
plane (respectively on a line). The particle cannot be localized in any one of the
available nests alone since the coordinates do not commute. The probabilities
of measuring particular values of the coordinates are discussed. The mean
trajectories and the standard deviations of the coordinates and momenta are
computed, and conclusions are drawn about uncertainty relations.
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1. Introduction

In the present paper, we continue the investigation of new quantum systems originating from
the representation theory of basic classical Lie superalgebras. In particular, we study further
the properties of a three-dimensional (3D) Wigner quantum oscillator whose mathematical
background involves the Lie superalgebra sl(1|3) [1, 2].

The idea behind these investigations stems from the 1950’s paper of Wigner Do the
equations of motion determine the quantum mechanical commutation relations? [3]. In
this paper Wigner has generalized a result of Ehrenfest [4]. The latter stated (up to
ordering details, which are irrelevant in our case) that in the Heisenberg picture of quantum
mechanics Hamilton’s (respectively the Heisenberg) equations are a unique consequence of
the canonical commutation relations (CCRs) and the Heisenberg (respectively Hamilton’s)
equations. Wigner has proved a stronger statement. He has shown through an example that
Hamilton’s equations can be identical to the Heisenberg equations even if the position and
momentum operators do not satisfy the CCRs.

Wigner’s example was a one-dimensional oscillator with a Hamiltonian Ĥ = 1
2 (p̂2 + q̂2),

in units such that m = ω = h̄ = 1. Abandoning the requirement [q̂, p̂] = i, Wigner searched
for all operators q̂ and p̂ such that Hamilton’s equations ˙̂q = p̂ and ˙̂p = −q̂ are identical with
the Heisenberg equations ˙̂q = i[Ĥ , q̂] and ˙̂p = i[Ĥ , p̂]. In addition to the canonical solution
he found infinitely many other solutions, that is infinitely many solutions for the pair q̂ and p̂.
He interpreted these as position and momentum operators despite the fact that they do not
satisfy the CCRs [q̂, p̂] = i.

Different aspects of Wigner’s idea were studied by several authors. Among the earlier
papers we mention [5–11], but the subject still remains of interest [12–20].

The key motivation for a generalization of the concept of a quantum system [1, 2] comes
from the observation of Wigner [3] that the Heisenberg equations and Hamilton’s equations
have a more immediate physical significance than the CCRs. From this point of view, it is
logically justified to postulate as the starting point the Heisenberg equations and Hamilton’s
equations instead of the CCRs.

The conjecture that the CCRs have to be modified, including the possibility that the
configuration space coordinates may not mutually commute, originated recently from string
theory (we refer to [21] for a survey on the subject) and also from quantum groups (see
[22] for a review). However, the idea itself was already suggested by Heisenberg in the late
1930s (as explained in [23]), and perhaps the first example of this kind was given by Snyder
[24].

The above observations justify the consideration of what we call a Wigner quantum system
[1, 2]. As in [2], a Wigner quantum system (WQS) differs from a canonical quantum system
only by the replacement of the postulate on CCRs by a new postulate. In particular, consider
an n-particle system in three dimensions with Hamiltonian

Ĥ =
n∑

α=1

P̂
2
α

2mα

+ V (R̂1, R̂2, . . . , R̂n) (1.1)

which depends on the 6n variables R̂α and P̂α, with α = 1, 2, . . . , n, to be interpreted as
(Cartesian) coordinates and momenta, respectively. Just as in ordinary quantum mechanics,
the following conditions should hold:

(P1) The state space W is a Hilbert space. To every physical observableO there corresponds
a Hermitian (self-adjoint) operator Ô acting in W .
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(P2) The observable O can take only those values which are eigenvalues of Ô . The
expectation value of the observableO in a state ψ is given by 〈Ô〉ψ = (ψ, Ôψ)/(ψ,ψ),
where (ψ, φ) denotes the scalar product of ψ,φ ∈ W .

Together with others, these postulates are common to any quantum system. We repeat only
(P1) and (P2) here because we will explicitly make use of them. The difference with canonical
quantum mechanics comes from postulating (P3):
(P3) Hamilton’s equations and the Heisenberg equations hold and are identical (as operator

equations) in W .

In the canonical case instead of (P3) one postulates the validity of the Heisenberg equations
and the CCRs. Then, as mentioned above, Hamilton’s equations also hold.

Here, we shall no longer use the CCRs, but rely on (P3) instead. The corresponding
system is called a WQS. Although R̂α and P̂α no longer satisfy the CCRs, following Wigner
(and the related papers [5–20, 24]), we shall still interpret them as the operators corresponding
to measurements of the physical position and momentum of the WQS and refer to them as
position and momentum operators.

Let us point out again that the above postulates do not provide a complete description of
WQSs nor of Wigner quantum oscillators to be studied in the present paper. On the ground of
these postulates alone one cannot determine the expressions for the operators of the angular
momentum, for instance.

It is perhaps worth mentioning that postulate (P3) can be weakened (so far only in the
one-dimensional (1D) case) in a manner consistent with Wigner’s ideas [11] so that deformed
quantum oscillators [25, 26] and, more generally, Daskaloyannis oscillators [11, 27] can be
viewed as (generalized) Wigner oscillators.

Our approach to Wigner quantum oscillators is essentially based on two observations. The
first one, due to Kamefuchi and Ohnuki [28], is the proof that all solutions found by Wigner are
different representations of just one pair of para-Bose (pB) creation and annihilation operators
(CAOs) B± = (q ∓ p)/

√
2. More generally, we recall that the (representation-independent)

pB operators, which generalize Bose statistics, are defined by the relations [29][{
B

ξ

i , B
η

j

}
, B

ζ

k

] = (ζ − ξ)δikB
η

j + (ζ − η)δjkB
ξ

i i, j, k = 1, 2, . . . , N ξ, η, ζ = ±
(1.2)

(where, by convention, ξ, η, ζ are written as ± when used as superscripts, and as ±1 when
used algebraically in the factors (ζ − ξ) and (ζ − η)). Here and throughout the paper {x, y} =
xy + yx and [x, y] = xy − yx for any x, y.

The second relevant observation is that any N pairs of pB operators B±
1 , . . . , B±

N are
odd elements, generating a Lie superalgebra [30], isomorphic to the orthosymplectic Lie
superalgebra osp(1|2N) [31]. The Fock spaces of any N pairs of parabosons and in particular
of bosons are irreducible osp(1|2N) modules. In this terminology the oscillator of Wigner can
be called an osp(1|2) oscillator, its position and momentum operators are the odd generators of
osp(1|2), the Hamiltonian is a simple polynomial of the position and momentum operators and
the solutions found by Wigner are different irreducible representations of this Lie superalgebra.

The osp(1|2N) Lie superalgebra is a basic classical Lie superalgebra from class B in
the classification of Kac [32]. In fact (1.2) yields one possible definition of osp(1|2N):
the associative superalgebra with unity, subject to relations (1.2) is the universal enveloping
algebra of osp(1|2N).

The results of Wigner can be easily extended to any N-dimensional harmonic oscillator,
turning it into a Wigner quantum oscillator (WQO). To this end, one has to first express the
Hamiltonian via Bose operators
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b−

i , b+
j

] = δij

[
b+

i , b
+
j

] = [
b−

i , b−
j

] = 0 i, j = 1, . . . , N (1.3)

and their anticommutators and subsequently replace them with pB operators (1.2).
The corresponding solutions are now associated with infinite-dimensional irreducible
representation of the Lie superalgebra osp(1|2N). Since this superalgebra is of class B
we refer to the statistics of the canonical quantum oscillator (CQO) (and its pB generalization)
as being B-superstatistics.

Having observed all this, it was natural to ask whether one can satisfy the postulates
(P1)–(P3) with position and momentum operators which generate algebras from the other,
different from B, classes of basic Lie superalgebras. A positive answer to this question was
given in [1, 2] with operators A±

i , i = 1, . . . , N, which satisfy certain relations that we will
specify in the next section. These ensure that they generate the Lie superalgebra sl(1|N).
The corresponding solutions are this time associated with a WQS that takes the form of an
N-dimensional non-canonical WQO. Since the special linear Lie superalgebra sl(1|N) is of
class A we refer to the statistics of this WQO as being A-superstatistics.

In a similar approach Barut and Bracken [33] have described the internal dynamics
(Zitterbewegung) of Dirac’s electron. Their creation and annihilation operators satisfy similar
triple relations as in our case (equations (2.11)), but instead of a Lie superalgebra they generate
the Lie algebra so(5).

In the present paper we study further the properties of the 3D WQO, related to the sl(1|3)

superalgebra and initiated in [1, 2]. The paper is organized as follows.
In section 2 we outline the mathematical structure of the 3D non-canonical oscillator.

The compatibility between the Heisenberg equations and the Hamilton equations is achieved
with operators A±

1 , A±
2 , A±

3 which satisfy triple relations similar to those for the pB case (1.2),
but this time they generate the Lie superalgebra sl(1|3). The Fock spaces W(p) of these
operators are defined. The inequivalent representations are labelled by one positive integer p.
For p > 2 all Fock spaces are eight dimensional, whereas in the case p = 1 (respectively
p = 2) dim W(1) = 4 (respectively dim W(2) = 7). In the terminology of Kac [32]
the p = 1, 2 representations are called atypical representations. For this reason we refer
to the Fock spaces W(1) and W(2) as atypical spaces, to the corresponding oscillator as to
atypical oscillator etc. We shall see in the following sections that the properties of the atypical
oscillators are very different from those with p > 2.

In section 3 we recall the known [1, 2] physical properties of the sl(1|3) WQOs. Firstly,
the oscillator has finite space dimensions and the Hamiltonian has no more than four different
eigenvalues. In the stationary states, the distance of the particle to the origin is quantized
so that the particle is constrained to move on one of four possible spheres. Secondly, the
geometry of the oscillator is non-commutative. The various coordinates do not commute with
one another, nor do the various components of the momentum. Therefore, in particular, the
position of the particle on the corresponding sphere cannot be localized. In this respect, the
WQO belongs to the class of models of non-commutative quantum oscillators [34–38] and,
more generally, to theories with non-commutative geometry [39, 40]. It is shown, however,
that the non-commutativity between our position and momentum operators is different from the
non-commutativity appearing in the most commonly adopted form of generalized Heisenberg
commutation relations (see equation (3.5)).

All results after section 3 are new. In section 4 the probabilistic distribution of the particle
is analysed. The basis consists of stationary states. The main result is the following: if
the particle is in one of the basis states with p > 2, then measurements of its coordinates
are consistent with it only being found at eight particular points on a sphere which form the
vertices of a rectangular parallelepiped (see figure 1). Thus as in [41], the coordinates of the
particle are observables with a quantized spectrum just as energy, angular momentum, etc.
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The number of points, called ‘nests’, can be even less in the atypical cases. In certain states
with p = 2 the oscillator becomes a flat object with four vertices (figure 2). There are three
states in the p = 1 case when the oscillator is even one dimensional (figure 3). In section 5
the mean trajectories and the standard deviations of the position and momentum operators for
an arbitrary state are written down. It is shown (conclusion 3) that there exists no nontrivial
analogue of the Heisenberg uncertainty relations since one can always find a state x for which
either (
rk)x = 0 or (
pk)x = 0.

In section 6 we show that despite the fact that the sl(1|3) oscillator is very different from
the 3D canonical oscillator, they still have some features in common. In particular, we show
that to each p = 1 mean trajectory of the sl(1|3) oscillator there corresponds exactly the same
trajectory of the 3D canonical oscillator.

2. Mathematical structure of the 3D WQO

Let Ĥ be the Hamiltonian of a 3D harmonic oscillator, that is

Ĥ = P̂2

2m
+

mω2

2
R̂2. (2.1)

We proceed to view this oscillator as a Wigner quantum system (WQS) and work throughout
in the Heisenberg picture in which the operators are, in general, time dependent. According
to postulate (P3) the operators R̂ and P̂ have to be defined in such a way that Hamilton’s
equations

˙̂P = −mω2R̂ ˙̂R = 1

m
P̂ (2.2)

and the Heisenberg equations

˙̂P = i

h̄
[Ĥ , P̂] ˙̂R = i

h̄
[Ĥ , R̂] (2.3)

are both valid, and are identical as operator equations. These equations are compatible only if

[Ĥ , P̂] = ih̄mω2R̂ [Ĥ , R̂] = − ih̄

m
P̂. (2.4)

The most general solution of (2.2) and (2.3) is not known. Here we mention the canonical
Bose solution. Expressed via boson creation and annihilation operators, it reads

rk(t) =
√

h̄

2mω

(
b+

k eiωt + b−
k e−iωt

)
pk(t) = i

√
mωh̄

2

(
b+

k eiωt − b−
k e−iωt

)
. (2.5)

In this setting rk and pk are canonical position and momentum operators, defined in a Bose–
Fock space � with orthonormal basis states

|n1, n2, n3) =
(
b+

1

)n1
(
b+

2

)n2
(
b+

3

)n3

√
n1!n2!n3!

|0〉 n1, n2, n3 ∈ Z+ (2.6)

subject to the known transformation relations:

b+
k | . . . , nk, . . .) =

√
nk + 1| . . . , nk + 1, . . .) b−

k | . . . , nk, . . .) = √
nk| . . . , nk − 1, . . .).

(2.7)

As mentioned already in the introduction, this Bose solution belongs to the class of B-
superstatistics.

In the present paper we deal with solutions of (2.2) and (2.3) for which the operators R̂i

and P̂ i , i = 1, 2, 3, generate a Lie superalgebra from the class A, more precisely sl(1|3).
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We emphasize again that despite the fact that R̂i and P̂ i do not satisfy the CCRs, i.e.
they are only ‘position-like’ and ‘momentum-like’ operators, we interpret them as operators
describing position and momentum. Accordingly, we refer to them as position and momentum
operators in the rest of this paper. To make the connection with sl(1|3) we write the operators
P̂ ≡ (P̂ 1, P̂ 2, P̂ 3) and R̂ ≡ (R̂1, R̂2, R̂3) in terms of new operators:

A±
k =

√
mω

2h̄
R̂k ± i

√
1

2mωh̄
P̂ k k = 1, 2, 3. (2.8)

The Hamiltonian Ĥ of (2.1) and the compatibility conditions (2.4) then take the form

Ĥ = ωh̄

2

3∑
i=1

{
A+

i , A
−
i

}
(2.9)

3∑
i=1

[{
A+

i , A
−
i

}
, A±

k

] = ∓2A±
k i, k = 1, 2, 3. (2.10)

As a solution to (2.10) we chose operators A±
i that satisfy the following triple relations:[{

A+
i , A

−
j

}
, A+

k

] = δjkA
+
i − δijA

+
k (2.11a)[{

A+
i , A

−
j

}
, A−

k

] = −δikA
−
j + δijA

−
k (2.11b){

A+
i , A

+
j

} = {
A−

i , A−
j

} = 0. (2.11c)

In our case i, j, k = 1, 2, 3. Equations (2.11) are defined however for i, j, k = m,m+1, . . . , n,
where m and n are any integers (including m = −∞ and n = ∞).

Proposition 1. The operators A±
i , i = 1, . . . , n, satisfying (2.11), are odd elements generating

the Lie superalgebra sl(1|n) [42].

The generators A±
i , i = 1, . . . , n are said to be creation and annihilation operators of

sl(1|n). They resemble ordinary Fermi operators (see (2.11c)) and can be interpreted as
quasi-fermions in the context of generalized statistics [43]. These CAOs are the analogue of
the Jacobson generators for the Lie algebra sl(n + 1) [44] and could also be called Jacobson
generators of sl(1|n).

Coming back to the 3D oscillator, we emphasize again that all considerations here are in
the Heisenberg picture. The position and momentum operators depend on time. Hence also
the CAOs depend on time. Writing this time dependence explicitly, one has

Hamilton’s equations Ȧ±
k (t) = ∓iωA±

k (t) (2.12)

Heisenberg equations Ȧ±
k (t) = iω

2

3∑
i=1

[{
A+

i (t), A
−
i (t)

}
, A±

k (t)
]
. (2.13)

The solution of (2.12) is evident,

A±
k (t) = e(∓iωt)A±

k (0) (2.14)

and therefore if the defining relations (2.11) hold at a certain time t = 0, i.e., for A±
k ≡ A±

k (0),
then they hold as equal time relations for any other time t. From (2.11) it also follows
that equations (2.12) are identical with equations (2.13). For further use we write the time
dependence of R̂ = (R̂1, R̂2, R̂3) and P̂ = (P̂ 1, P̂ 2, P̂ 3) explicitly,
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R̂k(t) =
√

h̄

2mω

(
A+

k e−iωt + A−
k eiωt

)
(2.15a)

P̂ k(t) = −i

√
mωh̄

2

(
A+

k e−iωt − A−
k eiωt

)
(2.15b)

where k = 1, 2, 3.
Next, we wish to introduce the concept of angular momentum and the related space

rotations. In order to define the angular momentum operator M̂ = (M̂1, M̂2, M̂3), we assume
(as in canonical quantum mechanics, for observables having a classical analogue) that its
components are in the enveloping algebra of R̂ = (R̂1, R̂2, R̂3) and P̂ = (P̂ 1, P̂ 2, P̂ 3) and
moreover that they are linear with respect to the components of these operators. We also
require that M̂1, M̂2 and M̂3 commute with the Hamiltonian, and that they span a basis of the
Lie algebra so(3). The operators with the required properties are

M̂j = −1

h̄

3∑
k,l=1

εjkl{R̂k, P̂ l} j = 1, 2, 3 (2.16)

(εjkl is the antisymmetric unit tensor of rank 3), which take the following form in terms of the
CAOs (2.11):

M̂j = −i
3∑

k,l=1

εjkl

{
A+

k , A
−
l

}
j = 1, 2, 3. (2.17)

It is straightforward to verify that these operators satisfy the required commutation relations:

[M̂j , M̂k] = iεjklM̂l [M̂j , Ĥ ] = 0. (2.18)

Hence M̂1, M̂2, M̂3 are the generators of the Lie algebra so(3), i.e. they generate the so(3)

subalgebra of sl(1|3). Moreover they are integrals of motion: they do not depend on time. We
shall interpret M̂ as the operator describing the angular momentum of the WQO, and simply
refer to it as the angular momentum. As in the canonical case, we shall also identify the
components of M̂ as the operators of infinitesimal rotations. Then the relations

[M̂j , R̂k] = iεjkl R̂l [M̂j , P̂ k] = iεjkl P̂ l (2.19)

together with (2.18), show that R̂, P̂ and M̂ all transform as vector operators with respect to
space rotations.

The state spaces which we consider here are those irreducible sl(1|3) modules that may be
constructed by means of the usual Fock space technique precisely as in the parastatistics case
[29]. To this end we require that the representation space, W(p), contains (up to a multiple) a
unique cyclic vector |0〉 such that

A−
i |0〉 = 0 A−

i A+
j |0〉 = pδij |0〉 i, j = 1, 2, 3. (2.20)

The above relations are enough for the construction of the full representation space W(p).
This space defines an indecomposable finite-dimensional representation of the CAOs (2.11)
and hence of sl(1|3) for any value of p. However, following (P1) and (P2), we wish to impose
the further physical requirements that

(a) W(p) is a Hilbert space with respect to the natural Fock space inner product, and
(b) the observables, in particular the position and momentum operators (2.15), are Hermitian

operators.
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Condition (b) reduces to the requirement that the Hermitian conjugate of A+
i should be A−

i ,
i.e. (

A±
i

)† = A∓
i . (2.21)

Condition (a) is then such that p is restricted to be a positive integer [42], in fact any positive
integer.

Let  ≡ (θ1, θ2, θ3). The state space W(p) of the system is spanned by the following
orthonormal basis (called the -basis),

|p; 〉 ≡ |p; θ1, θ2, θ3〉 =
√

(p − q)!

p!

(
A+

1

)θ1
(
A+

2

)θ2
(
A+

3

)θ3 |0〉 (2.22)

where

θi ∈ {0, 1} for all i = 1, 2, 3 (2.23)

and

0 � q ≡ θ1 + θ2 + θ3 � min(p, 3). (2.24)

The transformation of the basis states (2.22) under the action of the CAOs reads as follows:

A−
i |p; . . . , θi , . . .〉 = θi(−1)θ1+···+θi−1

√
p − q + 1|p; . . . , θi − 1, . . .〉 (2.25a)

A+
i |p; . . . , θi, . . .〉 = (1 − θi)(−1)θ1+···+θi−1

√
p − q|p; . . . , θi + 1, . . .〉. (2.25b)

The factors θi and (1 − θi) ensure that the only non-vanishing cases are those for which
|p; . . . , θi ± 1, . . .〉 do indeed belong to the set of basis states defined by (2.22)–(2.24).

Note the first big difference between this non-canonical WQO and the case of a
conventional CQO:

Observation 1. Contrary to the CQO with an infinite-dimensional state space, each state
space W(p) of the WQO is finite dimensional.

In fact dim W(p) = 8 for p > 2, whereas dim W(1) = 4 and dim W(2) = 7.

3. Known properties of 3D WQOs

Here we recall the physical properties of the Wigner quantum oscillators (WQOs) as given in
[1, 2].

The first thing we note is that the representation of sl(1|3) was chosen such that, as in the
case of a 3D CQO, the physical observables Ĥ , R̂, P̂ and M̂ are, in the case of the WQO, all
Hermitian operators within every Hilbert space W(p) for each p = 0, 1, . . . (in accordance
with postulate (P1)).

Secondly, in the case of the WQO the Hamiltonian Ĥ is diagonal in the basis (2.22)–
(2.24), i.e. the basis vectors |p; 〉 are stationary states of the system. As in the 3D CQO
the energy levels are equally spaced with the same spacing h̄ω. Contrary to the CQO each
Hilbert space W(p) has no more than four equally spaced energy levels, with spacing h̄ω.
More precisely,

Ĥ |p; 〉 = Eq |p; 〉 with Eq = h̄ω

2
(3p − 2q). (3.1)

So we can define stationary states ψq as superpositions of states |p; 〉 with the same q,

ψ0 = |p; 0, 0, 0〉 (3.2a)
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ψ1 = α(1, 0, 0)|p; 1, 0, 0〉 + α(0, 1, 0)|p; 0, 1, 0〉 + α(0, 0, 1)|p; 0, 0, 1〉 (3.2b)

ψ2 = α(1, 1, 0)|p; 1, 1, 0〉 + α(1, 0, 1)|p; 1, 0, 1〉 + α(0, 1, 1)|p; 0, 1, 1〉 (3.2c)

ψ3 = |p; 1, 1, 1〉 (3.2d)

where α(θ1, θ2, θ3) are complex numbers. The stationary states satisfy Ĥψq = Eqψq . Only
the states with q � p belong to the space W(p). Note that in the atypical cases (p = 1, 2) the
lowest energy level is degenerate: there are three linearly independent states with the same
ground state energy.

Perhaps the most striking difference between the WQO and the CQO is that the geometry of
the Wigner oscillators is non-commutative: the position operators R̂1, R̂2, R̂3 of the oscillating
particle do not commute with each other,

[R̂i, R̂j ] �= 0 for i �= j = 1, 2, 3. (3.3)

Hence for the Wigner oscillators a coordinate representation (x-representation) does not exist.
Similarly,

[P̂ i , P̂ j ] �= 0 for i �= j = 1, 2, 3 (3.4)

and therefore also a momentum representation (p-representation) cannot be defined.
Relations (3.3) and (3.4) imply that the WQO belongs to the class of models of

non-commutative quantum oscillators [34–38] and, more generally, to theories with non-
commutative geometry [39, 40]. The literature on this subject is vast. Moreover, the subject
is no longer of purely theoretical interest. Most recently, papers predicting (experimentally)
measurable deviations from the commutativity of the coordinates have been published [45–49].
Here however, we only deal with a purely theoretical description.

Following the non-commutativity, it is natural to ask about the nature and value of the
commutator [R̂i, R̂j ] (or [P̂ i , P̂ j ], or [R̂i , P̂ j ]). The answer to this question is relevant since
it is used in the derivation of the uncertainty relations between the coordinates for instance.
To answer this, note that the commutators between the operators R̂i and P̂ j do not belong
to the Lie superalgebra sl(1|3) (R̂i and P̂ i are odd elements of the algebra), so they cannot
be rewritten in a simpler form. Of course, one can compute the action of these commutators
on basis vectors of the considered sl(1|3) modules W(p). We have actually made these
computations. However the resulting formulae are rather complicated. Later, we content
ourselves with only one illustrative example in (5.18).

It is worth pointing out that the commutators [R̂1, R̂2], [R̂1, R̂3] and [R̂2, R̂3] are
themselves operators that do not commute with each other in any one of the state spaces
W(p), p = 1, 2, . . . and therefore cannot be diagonalized simultaneously. For this reason, the
non-commutativity between our position and momentum operators is very different from the
non-commutativity of generalized Heisenberg commutation relations

[r̂i , r̂j ] = iθij [r̂i , p̂j ] = ih̄δij [p̂i, p̂j ] = iθ̄ij (3.5)

often adopted in the literature on non-commutative quantum mechanics (see for instance
[34–38]). On the right-hand side of (3.5) θij and θ̄ij are numbers (which are often further
simplified, e.g. θ̄ij = 0, θij = θ , etc) and therefore all operators [r̂i , r̂j ], [r̂i , p̂j ], [p̂i , p̂j ] are
simultaneously diagonal (in any basis of the state space).

Turning back to the WQO, there are two interesting integrals of motion, namely R̂2 and
P̂2. Furthermore, they are proportional to Ĥ :

ε̂ ≡ 2

ωh̄
Ĥ = 2mω

h̄
R̂2 = 2

mωh̄
P̂2 =

3∑
i=1

{
A+

i , A
−
i

}
. (3.6)
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And thus

R̂2|p; 〉 = h̄

2mω
(3p − 2q)|p; 〉 (3.7a)

P̂2|p; 〉 = mωh̄

2
(3p − 2q)|p; 〉 (3.7b)

for 0 � q ≡ θ1 + θ2 + θ3 � min(p, 3). Equation (3.7a) indicates that if the oscillator is
in a stationary state ψq with energy Eq = h̄ω

2 (3p − 2q), then the distance �q between the
oscillating particle and the origin of the coordinate system is

�q =
√

h̄

2mω
(3p − 2θ1 − 2θ2 − 2θ3) (3.8)

and this distance is an integral of motion, it is preserved in time. For further references we
formulate the following observation.

Conclusion 1. Each stationary state ψq , which is a superposition of states |p; 〉 with one and
the same q = θ1 + θ2 + θ3, corresponds to a configuration in which the particle is somewhere
at a distance �q from the centre of the coordinate system. However, the position of the particle
on the sphere of radius �q cannot be localized because the coordinates do not commute with
one another.

The maximum distance of the particle from the centre is

�max ≡ �0 =
√

3h̄p

2mω
(3.9)

and this corresponds to the state |p; 0, 0, 0〉, which carries also the maximal energy
Emax = 3

2 h̄ωp. Thus the WQO occupies a finite volume. The oscillating particle is locked in
a sphere with radius (3.9), which is another property very different from the CQO for which
there is no finite upper bound on the radial distance.

Finally we note that

M̂2|p; 〉 =
{

0 if θ1 = θ2 = θ3

2|p; 〉 otherwise.
(3.10)

Therefore each state |p; 〉 carries angular momentum 0 or 1. If p > 2,W(p) decomposes as
(1)⊕(3)⊕(3)⊕(1)with respect to the so(3) subalgebra of sl(1|3); herein (1) is a 1D subspace
with M = 0 and (3) is a 3D subspace with M = 1. For p = 2,W(2) = (1) ⊕ (3) ⊕ (3), and
for p = 1 one has W(1) = (1) ⊕ (3).

4. On the position and momentum of the oscillating particle

The results in the previous section are not very precise about the position of the oscillating
particle in one of its stationary states ψq or |p; 〉: the only conclusion is that the particle is
localized on a sphere with radius �q .

We shall first investigate the probabilistic distribution of the particle on the sphere
corresponding to the states |p; 〉 or ψq . In particular we shall show, with respect to
measurements of R̂1, R̂2 and R̂3, that in the stationary states |p; 〉 the particle can be found
at only eight points on the sphere (we call them ‘nests’) with radius �q , see (3.8), and the
number of such nests is even less in the atypical cases p = 1 and p = 2.

The main tool to obtain these results is based on the observation that the set of operators

Ĥ , R̂2, P̂2, R̂
2
1, R̂

2
2, R̂

2
3, P̂

2
1, P̂

2
2, P̂

2
3 (4.1)
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mutually commute and therefore can be diagonalized simultaneously. Observe that R̂
2
k and

P̂
2
k and more generally all even elements are independent of the time t, which is why we do

not write R̂k(t)
2 and P̂ k(t)

2.
The sequence (4.1) contains in fact only three independent integrals of motion, for instance

R̂
2
1, R̂

2
2, R̂

2
3, since

P̂
2
k = m2ω2R̂

2
k Ĥ = mω2R̂2 P̂2 = m2ω2R̂2 and R̂2 = R̂

2
1 + R̂

2
2 + R̂

2
3. (4.2)

All these are Hermitian operators in W(p). Hence we can choose a basis consisting of
common eigenvectors to all of them. In this case, we are lucky in the sense that all these
operators are already diagonal in the -basis.

At this point it is convenient to introduce dimensionless notation for the energy, the
coordinates and the momenta:

ε̂ = 2

ωh̄
Ĥ r̂i (t) =

√
2mω

h̄
R̂i(t) p̂i (t) =

√
2

mωh̄
P̂ i(t) i = 1, 2, 3. (4.3)

Then r̂2
i = p̂2

i , i = 1, 2, 3 and

ε̂ = r̂2 = p̂2 =
3∑

i=1

{
A+

i , A
−
i

}
. (4.4)

4.1. The basis vectors of W(p) with p > 2 (typical case)

For p > 2 all state spaces W(p) of the system are eight dimensional. The following holds:

r̂2
k |p; 〉 = p̂2

k |p; 〉 = (p − q + θk)|p; 〉 k = 1, 2, 3. (4.5)

What are the conclusions, which we can draw from equations (4.5)? Let us answer this
question first for one particular state, e.g. |p; 1, 1, 0〉. If measurements of the observables
corresponding to r̂2, r̂2

1 , r̂2
2 , r̂2

3 are performed, then according to postulate (P2) they will give
the eigenvalues of these operators, namely

r2 = 3p − 4 r2
1 = r2

2 = p − 1 r2
3 = p − 2. (4.6)

Moreover, since the operators r̂2, r̂2
1 , r̂2

2 , r̂2
3 commute the results (4.6) can be measured

simultaneously. The latter means that if several measurements of the coordinates are
performed, then they will discover all of the time that the particle is accommodated in one of
eight nests with coordinates

r1 = ±
√

p − 1 r2 = ±
√

p − 1 r3 = ±
√

p − 2 (4.7)

of a sphere with radius ρ = √
3p − 4.

Similarly, the measurements of the projections of the momenta will give (due to (4.5))

p1 = ±
√

p − 1 p2 = ±
√

p − 1 p3 = ±
√

p − 2. (4.8)

The generalization of this result to any -state is evident:

Conclusion 2. If the system is in one of the -basis states |p; 〉 then measurements of
r1, r2 and r3 imply that the oscillating particle can be found in no more than eight nests with
coordinates

r1 = ±
√

p − q + θ1 r2 = ±
√

p − q + θ2 r3 = ±
√

p − q + θ3 (4.9)

on a sphere with radius ρq = √
3p − 2q. The measured values of the momenta can also take

only eight different values,

p1 = ±
√

p − q + θ1 p2 = ±
√

p − q + θ2 p3 = ±
√

p − q + θ3. (4.10)
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Conclusion 2 significantly enhances the properties of the WQO known so far,and collected
in conclusion 1. The particle is not just anywhere on the sphere. In every -state |p; 〉 the
particle can be spotted in no more than eight points of the sphere with radius ρq . This is what
we can say so far. What we cannot say yet is whether some of these nests are not forbidden
for ‘visits’ or what is the probability of finding the particle in any one of them.

In order to investigate this last question, we shall need the eigenvectors and the eigenvalues
of all the operators of the coordinates and of the momenta. Before that, a short remark related
to the properties of any WQS will be in order.

Let O be an observable and let x1, . . . , xn be an orthonormed basis of eigenvectors of Ô:
Ôxi = Oixi . Assume that the system is in a state ψ = α1x1 + · · · + αnxn normalized to 1.
Postulate (P2) tells us that the expectation value 〈Ô〉ψ of the observable O in the state ψ is

〈Ô〉ψ = (ψ, Ôψ) = |α1|2O1 + · · · + |αn|2On. (4.11)

It follows that |αi |2 gives the probability of measuring the eigenvalue Oi of the operator Ô.
This is just the superposition principle of quantum mechanics. The conclusion is that this
principle holds for any WQS.

Thus in order to examine the probability for the particle to be in one of the eight nests,
one has to introduce as a first step an r̂k-basis, namely an orthonormal basis of eigenvectors
of r̂k for any k = 1, 2, 3. The second step is to express the -basis via the r̂k-basis for any
k = 1, 2, 3, and to apply the superposition principle.

One has to proceed in a similar way in order to examine the probability for the particle to
have each one of the possible values of momentum.

Let us define, for any k ∈ {1, 2, 3} and any  satisfying (2.23), the following vectors in
W(p):

vk() = 1√
2

(∣∣p; θk=0
〉
+ (−1)θ1+···+θk e−iωt

∣∣p; θk=1
〉)
. (4.12)

Herein, θk=0 stands for the -value specified by the left-hand side of (4.12) in which θk is
replaced by 0 (and similarly for θk=1). Thus vk() depends on θk only through the sign
factor (−1)θ1+···+θk . A careful computation shows that these (time-dependent) vectors vk()

constitute an orthonormal basis of eigenvectors of r̂k(t) in W(p):

r̂k(t)vk() = (−1)θk

√
p − q + θkvk(). (4.13)

The physical interpretation of each eigenvector vk() is clear (postulate (P2)): if (at the
time t) the oscillating particle is in a state vk() then its kth coordinate is (−1)θk

√
p − q + θk.

The inverse relations of (4.12) are also easy to write down:

|p; 〉 = 1√
2
(−1)(θ1+···+θk−1)θk eiωtθk

(
vk

(
θk=0

)
+ (−1)θkvk

(
θk=1

))
. (4.14)

The main observation needed is that in the inverse transformations (4.14) only two different
vectors vk appear, each with a coefficient of which the square modulus is 1

2 . In order to
understand the importance of this observation, consider an example, say |p; 1, 1, 0〉. The
expansion of this vector in the r̂k(t) eigenvectors (for k = 1, 2, 3) reads

|p; 1, 1, 0〉 = eiωt

√
2
(v1(0, 1, 0) − v1(1, 1, 0)) (4.15a)

= −eiωt

√
2
(v2(1, 0, 0) − v2(1, 1, 0)) (4.15b)

= 1√
2
(v3(1, 1, 0) + v3(1, 1, 1)). (4.15c)



3D Wigner quantum oscillator 4349

We see that the coefficients of v1(0, 1, 0) and v1(1, 1, 0) are equal up to a sign, and moreover
their square modulus is 1

2 . Therefore the superposition principle asserts that with equal
probability 1

2 the first coordinate r1 of the particle is either +
√

p − 1 or −√
p − 1. In other

words, the probability of finding the particle somewhere in the four nests above the r2r3-plane
is 1

2 ; and the probability to find the particle somewhere in the four nests below the r2r3-plane
is also 1

2 . Let us underline that this conclusion is time independent. The time-dependent basis
which we have used in order to derive it was playing only an intermediate role.

By means of the same arguments, using (4.15b), (4.15c) and (4.13), one concludes that
also with probability 1

2 the second coordinate r2 and the third coordinate r3 of the particle take
values ±√

p − 1 and ±√
p − 2, respectively for the state |p; 1, 1, 0〉.

Taking the three results (about the probabilities for r1, r2 and r3) together does not however
lead to a unique solution for the probabilities to find the particle in a particular nest. Indeed,
there are eight probabilities to be determined (one for each nest). From (4.15a) we have
deduced that the sum of four of them (above the r2r3-plane) is 1

2 , and the sum of the remaining
four (below the r2r3-plane) is also 1

2 ; so this yields two linear relations for the eight unknown
probabilities. Similarly, (4.15b) and (4.15c) each yields two linear relations. So in total there
are six linear relations in eight unknowns. A more detailed investigation even shows that only
four of the six linear relations are independent. This leads to the conclusion that the probability
of the particle being found in each nest cannot be determined by the present considerations:
there remain certain degrees of freedom.

We have made this analysis for the example |p; 1, 1, 0〉, but from (4.14) it is clear that
this conclusion generalizes to the case of all -states. This follows from the fact that in the
inverse transformations (4.14) only two different vectors vk appear, each with a coefficient of
which the square modulus is 1

2 .
We summarize the results in proposition 2.

Proposition 2. If the system is in one of the -basis states |p; 〉, then measurements of the
position of the oscillating particle are such that it can only be observed to occupy one of the
eight nests with coordinates

rk± = ±
√

p − q + θk k = 1, 2, 3 (4.16)

on a sphere of dimensionless radius ρq = √
3p − 2q. The probability P(± ± ±) of finding

the particle in the nest with coordinates (r1±, r2±, r3±) cannot be determined. However, the
probability of finding the particle somewhere in the four nests with first coordinate equal to
r1+ is 1

2 , and of finding it somewhere in the four nests with first coordinate equal to r1− is also
1
2 . The same holds for the second and third coordinates.

The measurement of the momentum of the particle can take one of the eight values

pk± = ±
√

p − q + θk k = 1, 2, 3. (4.17)

Again, the individual probabilities for each of the eight possible values of the momenta cannot
be determined; but the probability of having a fixed component pk+ is 1

2 , and that of a fixed
component pk− is also 1

2 (k = 1, 2, 3).

The proof of the second part of proposition 2, related to the probabilities of the eight
possible values (4.17) for the measurement of the momentum of the particle, is essentially
the same as for the coordinates. This time however, one has to use the orthonormal basis of
eigenvectors of p̂k(t), given by
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|p; 0, 0, 0〉

–2
0

2 r1
–2

0
2r2

–2

0

2

r3

|p; 1, 0, 0〉 |p; 0, 1, 0〉 |p; 0, 0, 1〉

–2
0

2 r1
–2

0
2r2

–2

0

2

r3

–2
0

2 r1
–2

0
2r2

–2

0

2

r3

–2
0

2 r1
–2

0
2r2

–2

0

2

r3

|p; 1, 1, 0〉 |p; 1, 0, 1〉 |p; 0, 1, 1〉

–2
0

2 r1
–2

0
2r2

–2

0

2

r3

–2
0

2 r1
–2

0
2r2

–2

0

2

r3

–2
0

2 r1
–2

0
2r2

–2

0

2

r3

|p; 1, 1, 1〉

–2
0

2 r1
–2

0
2r2

–2

0

2

r3

Figure 1. Identification of the results of all possible measurements of the coordinates of the particle
for each of the stationary states |p; 〉 of W(p) with p > 2. The eight small circles on each sphere
are the nests, the places where the oscillating particle can be spotted. The nests in the states of the
first (q = 0), the second (q = 1), the third (q = 2) and the last line (q = 3) from the top, are on
spheres with radii �0 > �1 > �2 > �3, see (3.8), and energies E0 > E1 > E2 > E3, see (3.1),
respectively.

ṽk() = 1√
2

(∣∣p; θk=0
〉 − i(−1)θ1+···+θk e−iωt

∣∣p; θk=1
〉)

(4.18)

with

p̂k(t)ṽk() = (−1)θk

√
p − q + θkṽk(). (4.19)
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The inverse relations of (4.18) are

|p; 〉 = iθk

√
2
(−1)(θ1+···+θk−1)θk eiωtθk

(
ṽk

(
θk=0

)
+ (−1)θk ṽk

(
θk=1

))
. (4.20)

The properties deduced in this subsection are summarized in figure 1.

4.2. The basis vectors of W(p) for p � 2 (atypical cases)

So far we have considered the properties of almost all state spaces W(p). There are only two
more cases left, namely those with p = 1 and p = 2. We shall see in this section that some of
their physical properties are very different from those of the typical cases, considered above.

4.2.1. The state space W(2). For p = 2, the state space W(2) is seven dimensional, since
|p; 1, 1, 1〉 = 0. Equations (4.5) remain valid for all admissible -values (that is, for all 

with  �= (1, 1, 1)). This implies that also conclusion 2 (with equations (4.9) and (4.10))
remains valid for the admissible -values. In this case, it is interesting to note that for the
states with q = p = 2, one of the operators r̂2

k has zero eigenvalue. For example, for the state
|2; 1, 1, 0〉 one finds

r2
1 = r2

2 = 1 r2
3 = 0. (4.21)

Thus the third coordinate of the particle is zero. Alsop3, the third component of the momentum,
is zero. So the system becomes flat, and the particle is ‘polarized’ so as to lie in the r1r2-plane.
The oscillator behaves as a two-dimensional object. The coordinates of the possible nests for
this state are (r1, r2, r3) = (±1,±1, 0). So there are four nests where the particle can be found
(see figure 2, where a complete picture of the possible |p; 〉 states is given); similarly, it can
have only four different momenta.

The conclusions about the probabilities, formulated in proposition 2, remain valid, but
should be modified appropriately for the lowest energy states with q = 2.

4.2.2. The state space W(1). The state space W(1) is four dimensional. The admissible
-values have θ1 + θ2 + θ3 � 1. For these admissible -values, (4.5) and conclusion 2 remain
valid. In this case, the interesting states are those with lowest energy with q = p = 1. For
these states, two of the operators r̂2

k have zero eigenvalue. For example, for the state |1; 1, 0, 0〉
one finds

r2
1 = 1 r2

2 = r2
3 = 0. (4.22)

The coordinates of the two possible nests for this state are (r1, r2, r3) = (±1, 0, 0). Similarly,
p2 = p3 = 0 for this state. So the oscillating system becomes one dimensional, the particle
is ‘polarized’ along the r1-axis (see figure 3, where a complete picture of all |p; 〉 states is
given).

For q = 1 the considerations about probabilities of finding the particle in one of the two
nests lead to a unique solution. For each of the states |1; 〉 with q = p = 1, this probability
is 1

2 . These nests are at the opposite poles on a sphere with radius 1.

4.3. Arbitrary vectors of W(p)

So far we were studying mainly the properties of the -states. Here we proceed to consider
some properties of the coordinates and momenta for an arbitrary state x ∈ W(p) and for any
representation label p.
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|2; 0, 0, 0〉

–2
0

2 r1
–2

0
2r2

–2

0

2

r3

|2; 1, 0, 0〉 |2; 0, 1, 0〉 |2; 0, 0, 1〉

–2
0

2 r1
–2

0
2r2

–2

0

2

r3

–2
0

2 r1
–2

0
2r2

–2

0

2

r3

–2
0

2 r1
–2

0
2r2

–2

0

2

r3

|2; 1, 1, 0〉 |2; 1, 0, 1〉 |2; 0, 1, 1〉

r3

r2r1

r3

r2r1

r3

r2r1

Figure 2. Identification of the results of all possible measurements of the coordinates of the particle
for each of the stationary states |p; 〉 of W(p) with p = 2. For q = 0 or q = 1 (the states on the
first and the second line from the top), the coordinates of the particle correspond to one of the eight
nests on the sphere, indicated by circles. For q = 2 (the bottom line), there are three independent
lowest energy states. For these states, there are only four possible nests on each sphere with radius√

2. These four nests are in the r1r2-plane for  = (1, 1, 0), in the r1r3-plane for  = (1, 0, 1)

and in the r2r3-plane for  = (0, 1, 1).

An arbitrary vector x from the state space W(p) can be represented as

x =
∑

θ123�p

α(θ1, θ2, θ3)|p; θ1, θ2, θ3〉 (4.23)

where α(θ1, θ2, θ3) are any complex numbers, such that∑
θ123�p

|α(θ1, θ2, θ3)|2 = 1. (4.24)

Above and throughout

θijk = θi + θj + θk (4.25)

and
∑

θ123�p denotes a sum over all θ1, θ2, θ3 ∈ {0, 1} with the additional restriction
θ1 + θ2 + θ3 � p. We shall also be using the polar form of α(θ1, θ2, θ3),

α() = |α()| eiϕ() (4.26)

where α() = α(θ1, θ2, θ3) and ϕ() = ϕ(θ1, θ2, θ3).
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|1; 0, 0, 0〉

–1
0

1 r1
–1 0 1r2

–1

0

1

r3

|1; 1, 0, 0〉 |1; 0, 1, 0〉 |1; 0, 0, 1〉

r3

r2r1

r3

r2r1 r1 r2

r3

Figure 3. Identification of the results of all possible measurements of the coordinates of the
particle for each of the stationary states |p; 〉 of W(p) with p = 1. For q = 0 (the top picture)
the coordinates of the particle correspond to one of the eight nests on the sphere, indicated by
circles. For q = 1 (the bottom line), there are three independent lowest energy states. For each
such state the nests are at opposite poles on a sphere with radius 1.

The possible coordinates (and momenta) of the oscillator, in an arbitrary state x, follow
from the previous discussions and the superposition principle. For clarity, let us formulate it
for W(p) with p > 2. Then a measurement of the position of the particle in the state x will
yield one of the 64 possible nests (see figure 1),

(r1, r2, r3) =
(
±

√
p − q + θ1,±

√
p − q + θ2,±

√
p − q + θ3

)
with q = θ1 + θ2 + θ3.

The probability of finding the particle somewhere in the eight nests associated with
|p; θ1, θ2, θ3〉 is given by |α(θ1, θ2, θ3)|2, but the probability for each nest separately cannot
be determined. Similarly, an arbitrary state x of W(2) can be in 44 possible nests (see
figure 2); an arbitrary state x of W(1) can be found in 14 possible nests (see
figure 3).

In order to give more properties of the position probabilities, it is again necessary to
expand the general state x in terms of the orthonormalized eigenstates of r̂k(t). Let us do it
here explicitly for p > 2; (4.23) and (4.14) imply that

x =
∑


1√
2

(
α
(
θk=0

)
+ (−1)θ1+···+θk−1 eiωtα

(
θk=1

))
vk(). (4.27)

Then the square modulus of the coefficient in front of vk() yields the probability of the
particle in the state x being observed to have r̂k(t) eigenvalue (−1)θk

√
p − q + θk.

Many of our formulae to be presented later will look rather complicated in the general
state x, so sometimes we shall concentrate on a particular example of such a normalized state
which carries all the main features of the general picture. We take as our standard example
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one of the simplest non-stationary states (we assume that p > 2, but most of the results, apart
from the number of the nests hold for p = 1 and 2)

z = 1√
2
|p; 0, 0, 0〉 +

1√
2
|p; 0, 0, 1〉. (4.28)

The consideration of such an example will help to understand some of the peculiar
features of the WQO in a general state. Let us explicitly deduce what can be said about the
position of the particle when the system is in the state z. First of all, only two -states are
involved in (4.28), each of these -states corresponding to eight nests. All of these nests are
different, so the particle can be detected in 16 possible nests. The probability of detecting
the particle somewhere in the eight nests corresponding to |p; 0, 0, 0〉 or to |p; 0, 0, 1〉 is 1

2 ;
these probabilities are just the square moduli of the coefficients in (4.28).

The state (4.28) of the oscillator corresponds to a configuration in which eight nests have
value of r3 = √

p and the other eight states have r3 = −√
p (see figure 1). We cannot

determine the probabilities of the 16 nests separately, but we can draw conclusions about the
probability P(r3 = ±√

p ) of detecting the particle in the nests with a given r3 = ±√
p. To

this end, consider the expansion of the state z in terms of the eigenvectors of r̂3(t):

z = 1
2 (1 + eiωt )v3(0, 0, 0) + 1

2 (1 − eiωt )v3(0, 0, 1). (4.29)

Then the square moduli of the coefficients give the probabilities of finding the particle in the
nests with a particular r3-value. So we find that

r3 = −√
p with probability P(r3 = −√

p) = 1 − cos(ωt)

2
(4.30a)

r3 = √
p with probability P(r3 = √

p) = 1 + cos(ωt)

2
. (4.30b)

Equations (4.30) describe an interesting new phenomenon, which does not show up
whenever the oscillator is in one of the -basis states or more generally in any stationary state
(3.2). As it should be P(r3 = −√

p) + P(r3 = √
p) = 1. But the probabilities are time

dependent. There is an oscillation of the probabilities: the probabilities for the particle to be
found in the nests either with r3 = √

p or with r3 = −√
p vary from 0 to 1.

Contrary to this the probabilities of finding the particle in the nests with a fixed r1-value,
or with a fixed r2-value are time independent. This follows from the expansion of the z-state
in terms of the eigenvectors of r̂1(t) and r̂2(t), which yields

P(r1 = √
p) = P(r1 = −√

p) = P(r1 =
√

p − 1) = P(r1 = −
√

p − 1) = 1
4 (4.31)

and

P(r2 = √
p) = P(r2 = −√

p) = P(r2 =
√

p − 1) = P(r2 = −
√

p − 1) = 1
4 . (4.32)

In the case of p = 1 (4.29) and (4.30) still hold, so the oscillations of the probabilities
along the r3-axis remain unaltered. In this case however two of the ten nests, those associated
with |1; 0, 0, 1〉, are on the third axis, which yields

P(r1 = 1) = P(r1 = −1) = 1
4 P(r1 = 0) = 1

2 (4.33)

and

P(r2 = 1) = P(r2 = −1) = 1
4 P(r2 = 0) = 1

2 . (4.34)
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Based on (4.30)–(4.32) we can compute the average values of the coordinates in the state z:

〈r̂3(t)〉z = −√
p

1 − cos(ωt)

2
+

√
p

1 + cos(ωt)

2
= √

p cos(ωt). (4.35a)

〈r̂1(t)〉z = 〈r̂2(t)〉z = 0. (4.35b)

5. Mean trajectories and standard deviations of positions and momenta

Now that we have discussed some properties of the position operators in more general states, let
us next compute the mean trajectories or time-dependent expectation values of the coordinates
and momenta and their standard deviations in a general state x. We shall then specify our
results to the stationary states ψq . We shall also indicate (conclusion 3) that for the WQS there
exist no (nontrivial) Heisenberg uncertainty relations.

For the mean trajectory of the coordinates in an arbitrary state x, we obtain

〈r̂k(t)〉x = (x, r̂k(t)x) =
∑

θ123�p

(−1)θ1+···+θk−1
√

p − q + θk

∣∣α(
θk=0

)
α
(
θk=1

)∣∣
× cos

(
ωt − ϕ

(
θk=0

)
+ ϕ

(
θk=1

))
(5.1)

where as in (4.12) θk=0 stands for the -value in which θk is replaced by 0 (and similarly
for θk=1). Observe that in (5.1), the contributions come in equal pairs; e.g. for k = 1, the
contribution coming from  = (0, θ2, θ3) is the same as that coming from  = (1, θ2, θ3),
since

√
p − q + θk is independent of θk. Similarly, one finds that

〈p̂k(t)〉x = (x, p̂k(t)x) = −
∑

θ123�p

(−1)θ1+···+θk−1
√

p − q + θk

∣∣α(
θk=0

)
α
(
θk=1

)∣∣
× sin

(
ωt − ϕ

(
θk=0

)
+ ϕ

(
θk=1

))
. (5.2)

For instance, for our standard example (4.28), we find that

〈r̂1(t)〉z = 0 〈r̂2(t)〉z = 0 〈r̂3(t)〉z = √
p cos(ωt) (5.3a)

〈p̂1(t)〉z = 0 〈p̂2(t)〉z = 0 〈p̂3(t)〉z = −√
p sin(ωt). (5.3b)

Note that each term on the right-hand sides of (5.1), (5.2) contains multiples

α(θ1, θ2, θ3)α(θ̃1, θ̃2, θ̃3) such that θ1 + θ2 + θ3 �= θ̃1 + θ̃2 + θ̃3. (5.4)

Therefore the right-hand sides of (5.1), (5.2) vanish if the system is in a stationary state
ψq . The latter stems from the observation that in the stationary states, see (3.2), x is a
linear combination of basis states |p; θ1, θ2, θ3〉 with fixed θ1 + θ2 + θ3, namely all non-zero
coefficients α(θ1, θ2, θ3) in (4.23) have one and the same q = θ1 + θ2 + θ3. Thus we have

Conclusion 3. The mean trajectories of the coordinates and momenta vanish if the system is
in a stationary state ψq .

In order to draw conclusions about the uncertainty of the coordinates and momenta, more
precisely about their standard deviations, we also need the mean square deviations of r̂k and
p̂k, k = 1, 2, 3. It follows from (4.5) that

〈r̂k(t)
2〉x = 〈p̂k(t)

2〉x =
∑

θ123�p

(p − q + θk)|α()|2. (5.5)

Recall that the general definition of the standard deviation 
X of an observable X in a
state x is given by


Xx =
√

〈X2〉x − 〈X〉2
x . (5.6)
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So from the previous formulae one can write down the standard deviation of r̂k(t) and p̂k(t)

in an arbitrary state x:


r̂k(t)x =


 ∑

θ123�p

(p − q + θk)|α()|2 −

 ∑

θ123�p

(−1)θ1+···+θk−1
√

p − q + θk

× ∣∣α(
θk=0

)
α
(
θk=1

)∣∣ cos
(
ωt − ϕ

(
θk=0

)
+ ϕ

(
θk=1

))
2



1/2

(5.7a)


p̂k(t)x =


 ∑

θ123�p

(p − q + θk)|α()|2 −

 ∑

θ123�p

(−1)θ1+···+θk−1
√

p − q + θk

× ∣∣α(
θk=0

)
α
(
θk=1

)∣∣ sin
(
ωt − ϕ

(
θk=0

)
+ ϕ

(
θk=1

))
2



1/2

. (5.7b)

Because of the double products in the expansion of the square, (5.7) cannot be simplified
further for an arbitrary state vector x.

Let us observe that in any one of the stationary states ψq the standard deviations become
very simple and are time independent:


r̂j (t)ψ0 = 
p̂j (t)ψ0 = √
p (5.8a)


r̂j (t)ψ1 = 
p̂j (t)ψ1 =
√

p − 1 + |α(θj = 1, θk = θl = 0)|2 �
√

p − 1 (5.8b)


r̂j (t)ψ2 = 
p̂j (t)ψ2 =
√

p − 1 − |α(θj = 0, θk = θl = 1)|2 �
√

p − 2 (5.8c)


r̂j (t)ψ3 = 
p̂j (t)ψ3 =
√

p − 2 (5.8d)

where j �= k �= l �= j ∈ {1, 2, 3}.
Although formulae (5.7) look complicated, they are easy to apply. For instance, for our

standard example (4.28), we find that


r̂1(t)z = 
p̂1(t)z = 
r̂2(t)z = 
p̂2(t)z =
√

2p − 1

2 (5.9)

r̂3(t)z = √

p| sin(ωt)| 
p̂3(t)z = √
p| cos(ωt)|.

Equations (5.7) can be used for independent verification of some of the properties of the
WQOs. Consider for instance the state |2; 1, 1, 0〉. We know, see (4.21), that in this state the
particle is polarized in the r1r2-plane, both r3 = 0 and p3 = 0. Equation (5.7) confirms this:


r̂3(t)y = 
p̂3(t)y = 0 in the state y = |2; 1, 1, 0〉. (5.10)

Let us note more generally that for any p and k = 1, 2, 3 there exists a state xk and a time
t such that 
r̂k(t)xk

= 0 or 
p̂k(t)xk
= 0. For instance,


r̂1(0)x1 = 0 for x1 = 1√
2
(|p; 0, 1, 0〉 + |p; 1, 1, 0〉) (5.11a)


r̂2(0)x2 = 0 for x2 = 1√
2
(|p; 0, 0, 1〉 + |p; 0, 1, 1〉) (5.11b)
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r̂3(0)x3 = 0 for x3 = 1√
2
(|p; 1, 0, 0〉 + |p; 1, 0, 1〉). (5.11c)

As an immediate consequence we have

Conclusion 4. The position and momentum operators of a WQO do not satisfy an uncertainty-
like relation of the form


r̂k(t)x
p̂k(t)x � γ (5.12)

for any γ > 0 holding simultaneously for all states x of the system at all times t (as is the case
for a CQO and, more generally, for any canonical quantum system).

If however, x is any stationary state ψq , then in the typical case with p > 2, (5.8) yields


r̂k(t)ψq
= 
p̂k(t)ψq

�
√

p − 2 (5.13)

for all k = 1, 2, 3. Therefore for any stationary state and any time


r̂i(t)ψq

r̂j (t)ψq

� p − 2


r̂i(t)ψq

p̂j (t)ψq

� p − 2 (5.14)


p̂i(t)ψq

p̂j (t)ψq

� p − 2

with p − 2 > 0.
Returning to the case of an arbitrary state x ∈ W(p), uncertainty-like relations of type

(5.12) certainly will exist, but the uncertainty parameter γ may be zero. They can be derived
from the general uncertainty relation [50]


F̂(t)x
Ĝ(t)x � 1
2 |〈[F̂ (t), Ĝ(t)]〉x | (5.15)

that applies to any two Hermitian operators F̂ and Ĝ for any x ∈ W(p).
Applying this in the case F̂ (t) = r̂k(t) and Ĝ(t) = p̂k(t) and the arbitrary state x as

defined in (4.23) gives


r̂k(t)x
p̂k(t)x �

∣∣∣∣∣∣
∑

θ123�p

(−1)θk (p − q + θk)|α()|2
∣∣∣∣∣∣ . (5.16)

It should be noted that the sign factors (−1)θk are such that cancellations may occur and may
yield zero on the right-hand side, as is the case, for example, if k = 3 and x is the state
x3 = 1√

2
(|p; 1, 0, 0〉 + |p; 1, 0, 1〉) introduced in (5.11c).

On the other hand if (5.16) is restricted to the stationary state ψ0, for example, then it
yields a relation very similar, when properly dimensionalized, to the Heisenberg uncertainty
relation, namely


R̂k(t)ψ0
Pk(t)ψ0 � h̄p

2
. (5.17)

Formulae of type (5.16) in the case of 
r̂k(t)x
r̂l(t)x, 
r̂k(t)x
p̂l(t)x and

p̂k(t)x
p̂l(t)x with k �= l are however much more involved and will not be analysed here
systematically. We only give a typical example illustrating the impact of the non-commutative
geometry:


r̂1(t)x
r̂2(t)x � 1
2 |〈[r̂1(t), r̂2(t)]〉x |

= |2
√

p(p − 1)|α(0, 0, 0)α(1, 1, 0)| sin(2ωt − φ(0, 0, 0) + φ(1, 1, 0))

+ 2
√

(p − 1)(p − 2)|α(0, 0, 1)α(1, 1, 1)| sin(2ωt − φ(0, 0, 1) + φ(1, 1, 1))

+ (2p − 1)|α(1, 0, 0)α(0, 1, 0)| sin(φ(1, 0, 0) − φ(0, 1, 0))

+ (2p − 3)|α(1, 0, 1)α(0, 1, 1)| sin(φ(1, 0, 1) − φ(0, 1, 1))|. (5.18)
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6. Comparison with the canonical quantum oscillator

From the discussions so far it becomes clear that the WQOs are very different from the
Bose canonical quantum oscillators (CQOs). Therefore it is somewhat of a surprise that one
can establish a one-to-one correspondence between some mean trajectories of the 3D CQO
and the p = 1 mean trajectories of the WQO. This will be the main topic of the present
section.

In dimensionless units, see (4.3), the coordinates r̄k and momenta p̄k, k = 1, 2, 3 of a 3D
canonical oscillator (2.5) read

r̄k(t) = b+
k eiωt + b−

k e−iωt p̄k(t) = i
(
b+

k eiωt − b−
k e−iωt

)
. (6.1)

Let us consider first a simple example. As a Bose analogue of our standard state z we set

z̄ = 1√
2
|0, 0, 0) +

1√
2
|0, 0, 1). (6.2)

It is a simple computation to show that the mean trajectories of the coordinates and momenta
in the state z̄ of the Bose oscillator read

〈r̄1(t)〉z = 0 〈r̄2(t)〉z = 0 〈r̄3(t)〉z = cos(ωt) (6.3a)

〈p̄1(t)〉z = 0 〈p̄2(t)〉z = 0 〈p̄3(t)〉z = −sin(ωt). (6.3b)

The above trajectories are the same as those of the WQO given in (5.3) provided in the latter
that p = 1. This was the first indication that some of the trajectories of the WQO are the same
as those of the canonical Bose oscillator. The question is how far does this similarity go. In
proposition 3 we summarize the results which we are able to establish.

Proposition 3. To each p = 1 mean trajectory in the phase space of the Wigner quantum
oscillator there corresponds an identical trajectory of the 3D Bose canonical quantum
oscillator.

Let p = 1. By a straightforward computation one shows that the mean trajectory of the
WQO in the state

x = α(0, 0, 0)|1; 0, 0, 0〉 + α(1, 0, 0)|1; 1, 0, 0〉 + α(0, 1, 0)|1; 0, 1, 0〉 + α(0, 0, 1)|1; 0, 0, 1〉
(6.4)

is the same as the mean trajectory of the Bose oscillator in the state

x∗ = α(0, 0, 0)∗|0, 0, 0) + α(1, 0, 0)∗|1, 0, 0) + α(0, 1, 0)∗|0, 1, 0) + α(0, 0, 1)∗|0, 0, 1).

(6.5)

The * on the right-hand side of (6.5) denotes complex conjugation.
Explicitly, the mean trajectories corresponding to (6.4) and (6.5) read

〈r̂k(t)〉x = 〈r̄k(t)〉x∗ = 2
∣∣α(0, 0, 0)α(0, 0, 0)θk=1

∣∣ cos
(
ωt + ϕ(0, 0, 0)θk=1 − ϕ(0, 0, 0)

)
(6.6a)

〈p̂k(t)〉x = 〈p̄k(t)〉x∗ = −2
∣∣α(0, 0, 0)α(0, 0, 0)θk=1

∣∣ sin
(
ωt + ϕ(0, 0, 0)θk=1 − ϕ(0, 0, 0)

)
(6.6b)

where α(0, 0, 0)θk=1 denotes α(1, 0, 0), α(0, 1, 0), α(0, 0, 1) according as k = 1, 2, 3,
respectively.

However, although the standard deviations of the coordinates and momenta of the WQO
in a state x and of the CQO in a state x∗ also look somewhat similar, they are in fact
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different:

WQO: 
r̂k(t)x = [|α(0, 0, 0)|2 +
∣∣α(0, 0, 0)θk=1

∣∣2 − 4
∣∣α(0, 0, 0)α(0, 0, 0)θk=1

∣∣2

× cos2 (
ωt − ϕ(0, 0, 0) + ϕ(0, 0, 0)θk=1

)]1/2
k = 1, 2, 3 (6.7)

CQO: 
r̄k(t)x∗ = [
1 + 2

∣∣α(0, 0, 0)θk=1

∣∣2 − 4
∣∣α(0, 0, 0)α(0, 0, 0)θk=1

∣∣2

× cos2 (
ωt − ϕ(0, 0, 0) + ϕ(0, 0, 0)θk=1

)]1/2
k = 1, 2, 3. (6.8)

Our standard state z provides a good illustration of the difference:

WQO: 
r̂1(t)z = 
r̂2(t)z = 1√
2


r̂3(t)z = | sin(ωt)| (6.9)

CQO: 
r̄1(t)z∗ = 
r̄2(t)z∗ = 1 
r̄3(t)z∗ = (1 + sin2(ωt))1/2. (6.10)

Let us go further and compare the standard deviations corresponding to the state y = |1; 1, 0, 0〉
and its Bose ‘partner’ y∗ = |1, 0, 0):

WQO: 
r̂1(t)y = 
p̂1(t)y = 1 
r̂k(t)y = 
p̂k(t)y = 0 k = 2, 3 (6.11)

CQO: 
r̄1(t)y∗ = 
p̄1(t)y∗ =
√

3 
r̄k(t)y∗ = 
p̄k(t)y∗ = 1 k = 2, 3. (6.12)

Equation (6.11) confirms that the oscillator in the state |1; 1, 0, 0〉 ‘lives’ on the r1-axis. This is
not the case for the CQO, either in the state |1, 0, 0) or in any other state, since the right-hand
side of (6.8) never vanishes, as is implied also by the Heisenberg uncertainty relations.

We have compared also the sizes of the WQO and CQO corresponding to the basis states.
For the CQO

r̄(t)2 =
3∑

k=1

((
b+

k

)2
e2iωt +

{
b+

k , b
−
k

}
+

(
b−

k

)2
e−2iωt

)
(6.13)

is not an integral of motion. However, for the average value of r̄2 in the state x∗ we find that

〈r̄(t)2〉x∗ = 5 − 2|α(0, 0, 0)|2. (6.14)

Thus we have

WQO: 〈r̂ (t)2〉|1;0,0,0〉 = 3 〈r̂ (t)2〉|1;1,0,0〉 = 〈r̂ (t)2〉|1;0,1,0〉 = 〈r̂ (t)2〉|1;0,0,1〉 = 1 (6.15)

CQO: 〈r̄ (t)2〉|0,0,0) = 3 〈r̄(t)2〉|1,0,0) = 〈r̄ (t)2〉|0,1,0) = 〈r̄(t)2〉|0,0,1) = 5. (6.16)

Thus only the states |1; 0, 0, 0〉 of the WQO and |0, 0, 0) of the CQO have one and the same
space dimensions. This is perhaps not surprising since only these states have one and the same
energy ε = 3 (in units of ωh̄/2). The energy of the other WQO states is 1, whereas for the
other CQO states it is 5.

7. Concluding remarks

It is clear that while alternative, non-canonical solutions to the compatibility equations (2.4)
between Hamilton’s equations and the Heisenberg equations exist in our sl(1|3) WQO model,
they are in several very important respects quite different from the canonical solutions.

Firstly, each state space W(p) of our one-particle 3D WQO is finite dimensional;
eight dimensional in the case of typical representations of sl(1|3), and either seven or four
dimensional in the case of atypical representations.
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Secondly, both the energy and the angular momentum are quantized, with equally spaced
energy levels, all positive and with separation 1

2 h̄ω, and with the angular momentum restricted
to be 0 or 1. Since there are only a finite number of energy levels, the energy is bounded. The
degeneracies are always either 3 or 1. The lowest energy state is non-degenerate in all the
typical cases, but degenerate in each of the atypical cases.

Thirdly, the spectrum of coordinates is also quantized, to the extent that in any stationary
state measurements of the coordinates r1, r2 and r3 give values consistent only with the particle
being found at a finite number of possible sites,namely the various nests that we have identified.
In the typical, p > 2 case, the number of possible nests is 64, while in the atypical cases it
is 44 if p = 2 and only 14 if p = 1. In all cases, the distance of the particle from the origin
is bounded and may take only the values

√
(h̄/2mω)(3p − 2q) with q ∈ {0, 1, 2, 3} such that

q � p.
Fourthly, not only is the mean trajectory of the particle in any stationary state zero, but

there exist both typical and atypical states for which the standard deviation of some coordinate
rk, or some component of linear momentum pk, is also zero. This implies that for the WQO
there exists no uncertainty relation involving a non-zero uncertainty parameter γ that applies
to all states at all times.

Fifthly, the atypical case is distinguished from the typical case in possessing stationary
states of dimension lower than three, namely two dimensional in the case p = 2 and one
dimensional in the case p = 1.

Many of these non-standard results are a consequence of the fact that the underlying
geometry of this WQO model is non-commutative. This means that their interpretation must
be undertaken carefully. In particular, it should be stressed that it is not possible to specify
precisely the position of the particle. Fortunately, the square operators r̂2

1 , r̂2
2 and r̂2

3 not only
mutually commute but also commute with the Hamiltonian. Their common eigenstates are the
stationary states |p; 〉, for which the eigenvalues of r̂2

1 , r̂2
2 and r̂2

3 are simultaneously fixed to
be either p,p−1 or p−2. Thus the spectrum of the measured values of each of the coordinates
themselves, r1, r2 and r3, is necessarily restricted to the set of values ±√

p,±√
p − 1 and

±√
p − 2. Any measurement of a coordinate, r1 say, results in one or the other of the allowed

positive or negative values of r1 with, as we have shown, equal probability, leaving the signs of
the other coordinates undetermined. Thus the particle in a stationary state |p; 〉 has a certain
probability of being within one or the other of the relevant nests, but it is not to be thought of
as localized in any particular nest.

In this paper we have restricted ourselves to the relatively simple case of an n = 1,
single-particle 3D WQO with a relatively low, 23-dimensional Fock space W(p) associated
with typical irreducible representations of sl(1|3), and even lower dimensions for atypical
representations. A very natural next step is to generalize the results to the case of an
n-body 3D WQO as introduced in [2]. In such a case the Fock space is 23n-dimensional
for typical representations, and again lower dimensions for atypical representations. The
relevant calculations are somewhat intricate and will be the subject of a separate paper, in
which the restriction from the Lie superalgebra sl(1|3n) to the simple Lie algebra so(3) of
the rotation group plays a key role in the determination of the possible angular momentum
states of our multiparticle system. It suffices to say at this stage that not only are the energy
and angular momentum quantized and bounded but, in the corresponding stationary states of
fixed energy and angular momentum, so are the single-particle coordinates and components of
linear momentum. As expected, the corresponding nest structure is more complicated and we
have to contend with the relevant class A statistics, and account for the numbers of particles
whose coordinates, when measured, can coincide with those of the nests, as well as more
complicated patterns of degeneracy.
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Further generalizations also come to mind. In particular, the class of irreducible
representations considered here are those specified by the parameter p. There exist other
finite-dimensional irreducible representations of sl(1|3), and more generally of sl(1|3n), that
are specified not only by a single positive integer p, but also by a partition or equivalently
a sequence of Kac–Dynkin indices [32]. These can be expected to provide other interesting
models of the Wigner quantum oscillator in the one-particle case and, more particularly, in
multiparticle cases. At the same time it would be interesting to explore in the same way other
non-oscillator Wigner quantum systems. For examples of this kind see [7, 10, 13].
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